On Lipschitz continuity of the joint spectral radius
نویسندگان
چکیده
منابع مشابه
Continuity of the Joint Spectral Radius: Application to Wavelets
Abstract. The joint spectral radius is the extension to two or more matrices of the (ordinary) spectral radius ρ(A) = max |λi(A)| = lim‖A m‖1/m. The extension allows matrix products Πm taken in all orders, so that norms and eigenvalues are difficult to estimate. We show that the limiting process does yield a continuous function of the original matrices—this is their joint spectral radius. Then ...
متن کاملOn the joint spectral radius
We prove the `p-spectral radius formula for n-tuples of commuting Banach algebra elements. This generalizes results of [6], [7] and [10]. Let A be a Banach algebra with the unit element denoted by 1. Let a = (a1, . . . , an) be an n-tuple of elements of A. Denote by σ(a) the Harte spectrum of a, i.e. λ = (λ1, . . . , λn) / ∈ σ(a) if and only if there exist u1, . . . , un, v1, . . . , vn ∈ A suc...
متن کاملContinuity Properties of the Lower Spectral Radius
The lower spectral radius, or joint spectral subradius, of a set of real d× d matrices is defined to be the smallest possible exponential growth rate of long products of matrices drawn from that set. The lower spectral radius arises naturally in connection with a number of topics including combinatorics on words, the stability of linear inclusions in control theory, and the study of random Cant...
متن کاملSharp Bounds on the PI Spectral Radius
In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.
متن کامل2 8 Se p 20 09 An explicit Lipschitz constant for the joint spectral radius ∗
In 2002 F. Wirth has proved that the joint spectral radius of irreducible compact sets of matrices is locally Lipschitz continuous as a function of the matrix set. In the paper, an explicit formula for the related Lipschitz constant is obtained. PACS number 02.10.Ud; 02.10.Yn MSC 2000: 15A18; 15A60
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PAMM
سال: 2002
ISSN: 1617-7061,1617-7061
DOI: 10.1002/1617-7061(200203)1:1<109::aid-pamm109>3.0.co;2-f